Requirements Reconnoitering at the Juncture of Domain and Instance

Martin S. Feather

USC/Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292
Email: feather@isi.edu

Abstract

The ability to rapidly reconnoiter requirements, that is,
construct, critique, contrast and complete a system’s
requirements would be highly beneficial. We (and others)
have previously argued that this necessitates dealing with
the inherent nature of requirements (their incompleteness,
inconsistency, ambiguity, etc.). Here we show how such
explorations can be sustained by linking a network of
domain requirements with instantiations of those
requirements for a particular instance of that domain.

1: Introduction

Several of us have previously argued that the
distinguishing feature of requirements engineering is that it
deals predominantly with the incorrect, and hence that it is
primarily a process of getting right from wrong [4, 5]. The
nature of requirements involves a mix of incompleteness,
inconsistency, ambiguity, redundancy, non-uniformity and
heterogeneity - properties we have termed ‘requirements
freedoms’. Thus any method or tool intended to support
requirements engineering must not only be tolerant of these
characteristics, but must play a positive role in assisting the
analyst toward resolving them in the transition toward a
specification and design for the task in question. The
Requirements Apprentice project, conceived of to address
these issues, is an early example of this [11].

A theme repeatedly in much of the work on requirements is
the focus on domains. Requirements are established for a
given domain of systems, and organized into a structure to
capture and distinguish the various forms of a domain’s
requirements - those common to all systems in that domain,
those that distinguish among alternative variations of such
systems, policies for achieving the requirements, etc.
Examples include the cliche library of the Requirements
Apprentice [10], the domain goal relations graph of Oz
[12], the goal structures that are instances of the KAOS
meta-model [2].

0-8186-3120-1/92 $3.00 © 1992 IEEE

73

In this paper I show how a simple network representation
of a domain’s requirements can be used to support the rapid
reconnoitering of a prospective (or existing) system’s
requirements. This representation is quite robust with
respect to the requirement freedoms identified above.
Queries to check for inconsistency and incompleteness
have been studied in the broader realm of project
management, ¢.g., [9, 13]. This effort can be seen as
tailoring a simplified version to dealing only with
requirements.

The paper is organized as follows: Section 2 presents a
simple network representation for requirements,
implemented within an entity-relationship database. This
is illustrated on the domain of resource management, and a
particular instance of that domain. Section 3 shows how
queries of such a representation can support requirements
analysis activities dealing with incompleteness,
inconsistency, and comparison of alternatives. Section 4
draws some observations from this exercise.

2: Reprasenting requirements as a network

In this section I describe a simple network representation
of requirements. The essence of this representation is an
entity-relationship model used to express requirements.
Entities comprise:

¢ Goal - an objective of the overall domain

 Policy - a typical means of achieving a goal or goals
and Relationships comprise:

* Supports - a policy may support a goal

* Impedes - a policy may impede a goal

* Augments - a policy may augment another policy

* SubGoalOf - a goal may be a subgoal of another goal
This model is used to represent domain requirements, that
is, the goals, policies and their inter-relationships common
to (or alternatives among) the class of systems
characterized by that domain. The following additions
support representation of systems that are instances of that
domain:

Entities:

* Instance - a system to be viewed as an instance of the
domain

Relationships:

« Policylnstance - a policy of the system

= ImpossiblePolicylnstance - a policy deemed impossible
for this particular system

Note that there is a simple meta-model [2] implicit within
this representation, e.g., Supports can hold only between a
policy and a goal; Policylnstance relates a policy to an
instance. This meta-model is simple in comparison to that
of the cited KAOS system.

Implementation: The above model is implemented in
APS5, our in-house relational extension of Common Lisp
[7]. The classes of entities (Goal, Policy and Instance) are
represented as AP5 types, and the classes of relationships
(Supports, etc.) as AP5 relations. AP5’s type discipline
ensures adherence to the meta-model, e.g., Supports can
only be asserted to hold between a policy object and a goal
object. All the queries shown in this paper have been
executed with this implementation.

2.1: Example

The domain that serves as the example within this paper is
that of resource-management (where users seek access to a
bounded resource). I use this domain because it is readily
understood without elaborate explanation of domain
details, because it is sufficiently rich to be interesting, and
because it can serve as acommon point for comparison and
contrast (this domain and instances of it have been used as
illustration for other requirements research, for example,
the ‘lending library’ problem from the IWSSD problem set
[8], video rental, theatre reservation, allocation of
applications for university courses...).

Using the simple model of requirements outlined above,
my representation of (some aspects of) the resource-
management domain is as follows:

Goals: each goal of the resource-management domain is
represented as a text string, briefly expressing the goal
(only we, the human reader, understand the natural
language contents; my system deals only with the structure
established between these strings treated as atomic
objects):

“effective use of resource”; “satisfy user requests”; “do

not burden user”; “discourage misuse” ; “equal access”;

“load balance”; “avoid no-shows”,
Policies: like goals, these are represented as text strings
which the system treats as atomic objects. Policies differ
from subgoals by being possible means to achieve the goals
to which they are linked, whereas subgoals are used to
represent a finer-grained decomposition of their parent
goals. Some of the policies for resource management are:

74

“reserve in advance”; “replenish resource”; “allow can-
cellation of reservation”; “charge for reservation™; “par-
tially refund reservation fee”; “penalize for no-show”;
“waitlist”™; “system can cancel reservation”
Relationships: these are used to capture the network
structure among the goals and policies of this domain. The
following relationships represent structure within the
resource-management domain:
+ SubGoalOf “avoid no-shows™ “effective use of resource”
» SubGoalOf “load balance” “effective use of resource”
» Supports “waitlist” “effective use of resource”

Supports “reserve in advance” “effective use of
resource”

+ Supports “charge for reservation” “discourage misuse”

» Supports “replenish resource” “effective use of
resource”

+ Impedes “reserve in advance” “do not burden user”
* Impedes “allow cancellation of reservation” “do not bur-
den user”

« Impedes "system can cancel reservation” “do not bur-
den user”

» Augments “allow cancellation of reservation” “reserve in
advance”

» Augments “penalize for no-show” “reserve in advance”
Implementation: I represent the above goals and policies
as objects of the corresponding AP5 types, and the above
relationships as instances of the corresponding AP5
relations between the appropriate objects.
As an instance of the resource-management domain I
consider the wilderness permit system that used by the U.S.
Forest Service in certain areas of California to control
access to wilderness areas. Basically, entry into wilderness
is treated as a bounded resource - hikers who wish to enter
the wilderness at a trailhead and camp overnight are
required to acquire a wildemess permit prior to entry. Each
trailhead is limited as to the number of such hikers allowed
to enter each day, thus setting the bound on the resource.
The system by which the Forest Service manages this
resource is the aspect I represent as an instance of the
resource-management domain.
The following policies characterizing the “Wilderness
Permit” system:

“charge for reservation”; “allow cancellation of reserva-

tion™ and “reserve in advance”.
The policy “replenish resource” is impossible for this
system.
Note that my model of system instances is very crude - for
example, all domain goals are assumed to hold of the
system instance, whereas in practice it is likely that only
some subset of them will be desired; the model could be
easily augmented to record which of the domain goals are
inherited by the instance, just as domain policies can be
marked as impossible for the system instance
Implementation: I use an AP5 object of type instance to
represent the Wilderness Permit system, and instances of

the AP5 relations corresponding to Policylnstance and
ImpossiblePolicylnstance.

3: Reconnoitering the requirements

We can use the network representation to explore the state
of the wilderness permit system with respect to the resource
management domain. Explorations take the form of queries
issued against the network. For example, the query “which
of the domain goals are supported by the wilderness permit
system’s policies?” can be coded as the following query to
the network:

(listof (g) s. t

(and (goal
?E (p) (and (Pollcylnstance “Wilderness Permits”)
(Supports P9)§))

which returns the list
(“discourage misuse” “effective use of resources”)

Implementation: The above is an instance of an AP5
query. Briefly, queries are constructed out of expressions
in first-order logic. Thus {Supports p g) is a truth-valued

expression, true if and only if the objects bound to p and g

are related by the Supports relation. The usual logical

connectives can be applied to build compound
expressions, thus (and (Policy...) (Supports...)) builds the
conjunct of its clauses. (E (p) ..) denotes existential
quantification [“E” for existential] - in this case, true if
there exists an object p satisfying the truth-valued
expression that follows (and (Policy...) (Supports ...)). The
outermost (listof (g) s.. ...) computes the list of objects
satisfying the truth-valued expression that follows (and

(goal g) ...).

A variety of such queries can be issued, e.g.,

= Supported goals (query shown above)

« Supported goals and the corresponding policies that
sggpo;t them (a simple extension of the query shown
above,

« Unsupported goals - introduce a negation before the
existential in the above:

... {not (E (p) (and (Policylnstance ...

This network representation and its queries can be used to
support the activities that deal with the variety of
‘requirements freedoms’ that we, and others, have
identified as pervasive in requirements engineering. These
issues are explored in the subsections that follow.

3.1: Inconsistency

Inconsistent requirements are common; indeed, much of
the activity of requirements engineering seems to be
finding an appropriate balance between idealized but
incompatible requirements. Our network is tolerant of
inconsistency, for example, the goals “effective use of
resources” and “do not burden the user” are generally

75

inconsistent, as reflected by the inclusion of domain
policies that support the former while impeding the latter.
Queries can be used to identify where these occur:

(listof (g h) s.t. (E (p) (and (Supports p g) (Impedes p h))))
returns the singleton list of one such pair:

((“effective use of resource” “do not burden user”))

We can. of course, query whether our particular system
instance contains such inconsistency:
(listof (g h) s.t.
(E (p) (and (Pollcylnstance p “Wilderness Permits”)
(Supports p g) (Impedes p h))))
which returns the same singleton list.

3.2: Incompleteness

Incompleteness, like inconsistency, can be present at either
or both of the domain and instance levels of our network
representation. My models of the resource-management
domain and of the wildemess permit system are far from
complete; nevertheless, my belief is that even incomplete
representations such as these can prove useful.

The knowledge that is encoded within the network can be
explored from simple completeness points of view, for
example, we can ask for domain goals for which there are
no policies in support of them, in order to explore the state
of completeness of our domain model. E.g.,

(listof
(an Goal

(not (g (p) (and (Policy p) (Supports p g))))))
returns the list:

("equal access” “load balance” “avoid no-shows” “do not
burden user”)

Likewise, we can ask for the domain goals that our system
instance does not support via any policies, domain policies
that we have not deemed impossible but have not included,
etc.

3.3: Alternatives / comparisons

Different versions of the same system, and different
systems, can be represented simultaneously as instances of
the same domain model, and compared. For example, it
was only in recent years, and only in certain areas, that the
Forest Service introduced the policy of charging a fee for
reservations. The ‘other’ version of this system (without
such fees) can be quickly created within this model by
creating another Instance object, “Free Wilderness
Permits” say, and assigning it all the same Policylnstance
and ImpossiblePolicylnstance relations as “Wilderness
Permits” except for the policy “charge for reservation”.
Once in place, the following query finds those goals that are
supported by a policy of “Wilderness Permits” but not by
any policy of “Free Wilderness Permits” (the results of

such a query might be more interesting in the case of two
systems instances that were further apart):

(listof (g) s.t. i ‘
(and (E (p} (and (PolicyInstance p “Wilderness Permits”)
(Supports pg)))
{not (E (p) (and (Policylnstance p “Free
ilderness Permits”)

(Supports p @)
returns the singleton list: (“discourage misuse”)

4: Observations and conclusions

The preceding sections have shown how a very simple
model of requirements for a domain, and instances of that
domain, can be built as an entity-relationship network. This
permits the reconnoitering of that network by issuing
simple queries against the stored information. I now make
some observations regarding this:

Bringing together a representation of domain requirements
with a representation of instances of systems of that domain
promotes the transfer of information from domain to
instances, between instances, and (potentially) from
instances back to the domain model.

A simple representation, backed by a query mechanism,
permits the easy formulation of a wide range of queries
against the accumulated requirements knowledge. This is
reminiscent of (indeed, inspired by) the gIBIS work [1].
My domain model is clearly weak in many aspects. It lacks
any representation of many of the requirements and
policies of resource-management (e.g., there is no
representation of ‘confirmation’ of reservations, or of
whether or not rescheduling is supported). It also lacks a
connection to a quantitative or behavioral model. Studies in
these directions, for the purposes of critiquing software
specifications, have been performed [3,6]. Finally, the
relationship between the instance level and the domain
models is rather trivial - it seems plausible that a more
sophisticated mechanism of linkage, involving
instantiation of parameters and the like, would become
necessary in more complex examples. My hope is that my
model could easily be extended to include more
knowledge, to make use of a more sophisticated
representation scheme, and to interface with more
sophisticated tools and models.

I have avoided the issue of the ‘process’ or ‘methodology’
by which requirements should be acquired, validated, etc.
The unrestricted nature of the model could be constrained
to encode, or operate in conjunction with, such processes.

Acknowledgments

The author has benefitted particularly from the research
contexts provided by ISI’s Software Sciences Division, and
Steve Fickas’ group at the University of Eugene, Oregon,
and from reviewer comments. Support from this work has

76

been provided by Defense Advanced Research Projects
Agency contract No. BAPT 63-91-K-0006; views and
conclusions in this document are those of the author and
should not be interpreted as representing the official
opinion or policy of DARPA, the U.S. Government, the
Forest Service, or any other person or agency connected
with them.

References
(1]
[2]

“gIBIS: A Tool for all Reasons,” Journal of the American
Society for Information Science, p.p. 200-213, May 1989.
A. Dardenne, S. Fickas and A. van Lamsweerde, ‘‘Goal-
Directed Concept Acquisition in Requirements Elicita-
tion,”” in Proc. 6th International Workshop on Software
Specification and Design (Como, Italy). IEEE Computer
Society, 1991, p.p. 14-21.

K. Downing and S. Fickas, “Specification Criticism Via
Goal-Directed Envisionment,” in Proc. 6th International
Workshop on Software Specification and Design (Como,
Italy). IEEE Computer Society, 1991, p.p. 22-30.

M.S. Feather, *‘Requirements Engineering: Getting Right
from Wrong,”” in Proc. 3rd European Sofiware Engineer-
ing Conference (Milan, Italy). Springer-Verlag, 1991
p.p485488.

M. S. Feather and §. Fickas, “Coping with Requirement
Freedoms,"” in Workshop Notes, International Workshop
on the Development of Intelligent Information Systems
(Niagara-on-the-Lake, Ontario, Canada, April 1992).

S. Fickas and P. Nagaranjan, “Critiquing Software Specifi-
cations,” in IEEE Expert, November 1988, p.p. 37-47.

N. Goldman and K. Narayanaswamy “Software Evolution
through Iterative Prototyping,” in Proceedings of the 14th
International Conference on Software Engineering, Mel-
bourne, Australia, 1992.

Proceedings of the 4th International Workshop on Soft-
ware Specification and Design, Monterey, California,
IEEE Computer Society, 1987.

M.H. Penedo * ‘Prototyping a Project Master Data Base for
Software Engineering Environments,’’ in Sigplan Notices
{(Proc. 2nd ACM Sigsoft/Sigplan Symp. Practical Software
Development Environments, Palo Alto, CA), Jan 1987,
22(1), p.p. 1-11.

H.N. Reubenstein and R.C. Waters, ‘“The Requirements
Apprentice: An Initial Scenario,” in Proc. of the Sth In-
ternational Workshop on Software Specification and De-
sign, Pittsburgh, Pennsylvania, IEEE Computer Society,
1988, p.p. 211-218.

C.Rich, R.C. Waters and H.N. Reubenstein, “Toward a Re-
quirements Apprentice”, in Proc. of the 4th International
Workshop on Software Specification and Design,
Monterey, California, IEEE Computer Society, 1987, p.p.
79-86.

W.N. Robinson, ‘‘Integrating Multiple Specifications Us-
ing Domain Goals’’ in Proc. of the 5th International
Workshop on Software Specification and Design, Pitts-
burgh, Pennsylvania, 1988, [EEE Computer Society p.p.
219-226

A. van Lamsweerde, B. Delcourt, E. Delor, M-C. Schayes
and R. Champagne, *‘Generic Lifecycle Support in the
ALMA Environment,” in IEEE Transactions on S. oftware
Engineering, June 1988, 14(6), p.p. 720-739.

Bl

[4]

[5]

[6]
(7]

(8]

[9]

{10]

(11}

{12]

13}

